Anexo 4

Creación modelo 3D

Modelización 3D de resistividad eléctrica

Para la representación 3D de los perfiles de resistividad eléctrica se implementó la metodología de Pryet et al. (2011). Es decir, se hizo una interpolación kriging ordinaria 2D de la profundidad al fondo de las capas así como su resistividad en cada sector de continuidad hidrogeológica (Figura A4.1). En este procedimiento también se utilizaron valores adicionales de profundidades al fondo de capa derivados de la información del registro estratigráfico de perforación. Para ello, resumimos cada registro en cinco capas de acuerdo con la estructura de los perfiles de resistividad 1D interpretados dentro del mismo sector. Este método nos permitió conservar el enfoque de interpretación de capas utilizado dentro de la inversión de los datos TEM.

La interpolación se llevó a cabo en una malla no estructurada donde cada punto de datos de sondaje (TEM o estratigráfico) se ha establecido como un nodo, lo que lleva a una resolución variable según el sector y el parámetro interpolado (que van desde el orden de 1 m² a 1 km²).

Para implementar la interpolación kriging 2D, se calcularon diferente semi-variogramas empíricos para cada parámetro del modelo de los 10 sectores de continuidad hidrogeológica (ver Anexo 3), y los ajustamos a un modelo teórico diferente. El procedimiento general para el cálculo y modelización del variograma se puede resumir en cuatro pasos:

- Elección de la dirección. Los procesos naturales no conducen a distribuciones espaciales isotrópicas. Típicamente hay una dirección de mayor continuidad (definida a través del azimut) y una dirección de mínima continuidad perpendicular a ella (Deutsch and Journel, 1998). Dentro de cada sector, se definió la dirección de mayor continuidad como la orientación principal de la cuenca del río para después calcular un variograma direccional basado en su azimut.
- 2. *Tendencia.* Se investigó la presencia de una tendencia en los datos condicionales (es decir, los parámetros del modelo: resistividad y profundidad al fondo de la capa) calculando un promedio de ventana móvil. Cuando los datos mostraron una tendencia significativa, se restó esa tendencia a los datos para quitarla.
- 3. *Cálculo del variograma experimental.* Para el cálculo del variograma empírico, se implementó una tolerancia de distancia y ángulo (es decir, azimut) para poder tener en cuenta el número limitado de puntos de datos condicionales y sus espaciado irregular al interno de cada sector.
- 4. *Ajustar el modelo de variograma.* La elección del modelo de variograma (p. ej., potencia, lineal, esférico, exponencial, etc.), sus parámetros (p. ej., rango, meseta, nugget, etc.) y los parámetros de tolerancia se ajustaron para los diferentes variogramas de acuerdo con los residuos entre el variograma experimental y modelado. Estos fueron optimizados para tener suma mínima y distribución normal. Dentro del mismo sector de continuidad hidrogeológica, establecemos un modelo de variograma (con diferentes parámetros optimizados) para todas las profundidades al fondo de la capa y uno para todas las resistividades de las capas.

En este enfoque, la incertidumbre sobre los parámetros del modelo proviene tanto de la inversión geofísica (es decir, la varianza de la inversión σ_{INV}^2) como de la interpolación (es decir, la varianza del kriging σ_{KRI}^2). En el primer caso, el criterio de inversión de mínimos cuadrados implementado en el software AarhusInv (utilizado para la inversion de los datos de sondeo TEM) proporciona una estimación de la incertidumbre sobre los parámetros del modelo a partir de la propagación de los errores de los datos en la matriz de covarianza del modelo (Auken and Christiansen, 2004; Menke, 2012). La otra fuente de incertidumbre se cuantifica mediante la varianza del kriging en las predicciones interpoladas y depende de la variabilidad espacial de los parámetros y la distancia a los puntos de datos condicionales. Dado que estas dos fuentes de incertidumbre son independientes, la

variabilidad total de cada parámetro del modelo (*k* es decir, la resistividad y la profundidad hasta el fondo de la capa) viene dada por:

$$\sigma^{2}[k(\mathbf{x},\mathbf{y})] = \sigma^{2}_{INV}[k(\mathbf{x},\mathbf{y})] + \sigma^{2}_{KRI}[k(\mathbf{x},\mathbf{y})]$$

Para averiguar la capacidad del interpolador de kriging para predecir correctamente los parámetros del modelo y sus variaciones se realizaron la prueba de validación cruzada "dejando uno afuera" (en ingles *leave-one-out cross-validation test*) y se comprobaron los valores de la raíz cuadrática media del error de predicción estandarizado para cada sector (Isaaks and Srivastava, 1989). Para el primer test, se utilizaron todos los valores "medidos" (es decir, los datos condicionales: en nuestro caso, las resistividades eléctricas y los espesores de las capas desde la inversión de los datos TEM y los registros de perforación estratigráficos) para construir el modelo de tendencia y autocorrelación. De manera iterativa, se eliminó la ubicación de cada uno de los datos condicionales y se predijo su valor a través de la interpolación kriging con los datos restantes. Para cada ubicación (*i*), es posible comparar los valores (Cressie, 1993). En consecuencia, los valores muy por encima o muy por debajo de esa media tenderán a ser respectivamente subestimados y sobrestimados. Es por esto que en un diagrama de dispersión que compara los valores pronosticados con los medidos, los puntos tenderán a alinearse en una línea recta con una pendiente ligeramente superior a 1.

La raíz cuadrática media del error de predicción estandarizado (*rcmepe*) tiene la ecuación:

$$rcmepe = \sqrt{\frac{\sum_{i=1}^{n} (\tilde{z_i} - z_i)^2}{n \sum_{i=1}^{n} \tilde{\sigma_i}^2}}$$

donde *n* es el número de valores medidos disponibles en cada sector y $\tilde{\sigma_l}^2$ es la varianza de kriging. Un error inferior a uno significa que la incertidumbre de predicción de kriging está sobreestimada, mientras que un error superior a uno significa que está subestimada.

Propiedades hidrogeológicas

Una vez obtenido el modelo de resistividad de capas 3D, fue posible escalar la caracterización hidroestratigráfica a cada sector de continuidad hidrogeológica (Figuras A4.2). Esto permitió obtener capas de propiedades hidrogeológicas (es decir, porosidad *n*, porosidad de drenaje *Sy*, conductividad hidráulica *K*, coeficiente de almacenamiento especifico, *Ss*) estimadas como los valores medios de los rangos mostrados en la Tabla A4.1, junto con sus incertidumbres, estimadas a partir de los límites de los rangos. Los rangos de valores para estos parámetros se construyeron a partir de la literatura (Domenico and Mifflin, 1965; Morris and Johnson, 1967; Freeze and Cherry, 1979; Heath, 1983; Domenico and Schwartz, 1990; Batu, 1998).

Más específicamente, para cuantificar las incertidumbres sobre la propiedad hidrogeológica por cada capa, se consideraron las incertidumbres de las resistividades interpoladas y los rangos de propiedades hidrogeológicas del material litológico interpretado. Si, considerando la incertidumbre sobre la resistividad (es decir, $\rho \pm \sigma[\rho]$), el valor de resistividad podría interpretarse como dos o más materiales litológicos diferentes, entonces se incrementó la incertidumbre sobre las propiedades hidrogeológicas a un rango más amplio que incluye todos los rangos de propiedades de los materiales interpretados.

Volúmenes de agua subterránea almacenada y propiedades hidrogeológicas derivadas

A partir de los espesores de capa interpolados y la profundidad al nivel freático obtenidos del modelo de flujo de agua subterránea Limarí 2020 (Flores and Aliaga, 2020), se pude estimar el espesor saturado (es decir, b_i) y la distribución espacial de la columna de agua almacenada en cada capa de relleno sedimentario (es decir, la columna de agua total, W_t^i , basada en la porosidad total, y la columna de agua disponible, W_d^i , basada en la porosidad de drenaje) para cada sector de continuidad hidrogeológica, juntos con sus incertidumbres.

Para cada pixel de la superficie definida por los sectores de continuidad hidrogeológica, se calcularon la columna de agua total y disponible con las ecuaciones:

$$W_t = \sum_{i=1}^{NRA} W_t^i = \sum_{i=1}^{NRA} \mathbf{b}_i \mathbf{n}_i$$
$$W_d = \sum_{i=1}^{NRA} W_d^i = \sum_{i=1}^{NRA} \mathbf{b}_i \mathbf{S} \mathbf{y}_i$$

donde b_i es el espesor saturado y n_i y Sy_i son la porosidad y la porosidad de drenaje estimadas por la capa *i* y *NRA* son el número de capas modelada que pertenecen al relleno aluvial.

Las fuentes de incertidumbre para el cálculo de las columnas de agua son las incertidumbres asociadas con la porosidad o porosidad de drenaje y con el espesor saturado de cada capa modelada. La incertidumbre asociada con el espesor saturado ($\sigma[b_i]$) está dada por la combinación de la incertidumbre asociada con la profundidad del nivel freático ($\sigma[z_w]$) y con las profundidades al fondo de la capa ($\sigma[z_i]$) cuando la capa no está completamente saturada (es decir, cuando la profundidad hasta el fondo de la capa es menor o igual que la profundidad del nivel freático):

$$\sigma[\mathbf{b}_i] = \sqrt{\sigma[z_w]^2 + \sigma[z_i]^2}$$

de lo contrario, la incertidumbre viene dada por la incertidumbre de la profundidad de la capa inferior solamente.

Suponiendo que las dos fuentes de incertidumbre ($\sigma[n_i|Sy_i]$ y $\sigma[b_i]$) son independientes, la incertidumbre total asociada con las columnas de agua viene dada por:

$$\sigma[W_{t|d}] = \sum_{i=1}^{NRA} \sigma[W_{t|d}^{i}] = \sum_{i=1}^{NRA} \sqrt{(b_i \sigma[n_i|Sy_i])^2 + (n_i|Sy_i \sigma[b_i])^2}$$

Del mismo modo, a partir de los valores estimados por la conductividad hidráulica de cada capa (K_i) y el espesor saturado, fue posible calcular los valores de transmisividad para cada capa (T_i) y total dentro de cada sector (T), junto a sus incertidumbres ($\sigma[T_i] y \sigma[T]$):

$$T = \sum_{i=1}^{NRA} T_i = \sum_{i=1}^{NRA} \mathbf{b}_i K_i$$
$$\sigma[T_i] = \sum_{i=1}^{NRA} \sigma[T_i] = \sum_{i=1}^{NRA} \sqrt{(\mathbf{b}_i \sigma[\mathbf{K}_i])^2 + (K_i \sigma[\mathbf{b}_i])^2}$$

También desde la porosidad de drenaje, el coeficiente de almacenamiento especifico y el espesor saturado, fue posible derivar los valores de almacenamiento (*S*) por cada capa junto a su incertidumbre de modo parecido a la transmisividad y columnas de aguas:

$$S = \sum_{i=1}^{NRA} S_i = \sum_{i=1}^{NRA} (\mathbf{b}_i S s_i + S y_i)$$

Por fin, los valores de columnas de agua se integraron sobre el área delimitada por cada sector para estimar el volumen de agua almacenada en cada capa de relleno aluvial y en la totalidad del relleno aluvial del sector mismo. Esta integración fue discretizada como:

$$V_{t|d} = \sum_{i=1}^{NRA} V_{t|d}^{i} = \sum_{i=1}^{NRA} A \sum_{j=1}^{N} W_{t|d}^{i,j}$$

donde *N* es el número de pixel en un sector, *A* es la superficie cubierta por cada píxel y $W_{t|d}^{i,j}$ es el valor de columna de agua por la capa i y píxel j (es decir, $V_{t|d}^i = A \sum_{j=1}^N W_{t|d}^{i,j}$ es el volumen de agua almacenada en cada capa del sector).

La incertidumbre asociada a la columna de agua en diferentes píxeles de un mismo sector se correlaciona cuando los píxeles se interpretan como parte de la misma unidad litológica. Para simplificar la propagación de incertidumbres a la estimación de volumen, se asumió una correlación perfecta entre todos los píxeles de un sector y se calculó como:

$$\sigma[V_{t|d}] = V_{t|d} \sum_{j=1}^{N} \frac{\sigma[W_{t|a}^{j}]}{W_{t|a}^{j}}$$

Esto aproximación entrega una pequeña sobreestimación de la incertidumbre en el caso de capas heterogéneas. Por otro lado, al asumir píxeles perfectamente des-correlacionados, la incertidumbre se reduce drásticamente: entre 0,2 y 3% del volumen; mientras que con la metodología propuesta oscila entre el 30 y el 80% del volumen. Los resultados se muestran en la Tablas A4.2-A4.11, donde se presentan tanto el volumen de agua almacenado en todo el espacio poroso (V_t) como la cantidad de agua disponible almacenada en la porosidad de drenaje (V_d) por capa que se interpretó como parte del relleno aluvial y por la totalidad del relleno aluvial en cada sector. Además, en tabla A4.12 se proporciona un resumen de los volúmenes total almacenado por cada sector de continuidad hidrogeológica. Todos los valores son proporcionados en m³ y se entregan con sus incertidumbres ($\sigma[V_t/d]$).

Referencias

Auken, E. and Christiansen, A. [2004]. *Layered and laterally constrained 2d inversion of resistivity data.* Geophysics 69, 752–761.

Batu, V. [1998]. *Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis.* New York: John Wiley and sons.

Cressie, N. [1993]. *Statistics for Spatial Data*. New York: John Wiley and sons.

Deutsch, C. V. and Journel, A. G. [1998]. *GSLIB: Geostatistical software library and user's guide (2nd ed.).* New York: Oxford University Press.

Domenico, P. and Mifflin, M. [1965]. *Water from low-permeability sediments and land subsidence*. Water Resources Research. 1, 563–576850

Domenico, P. and Schwartz, F. [1990]. *Physical and chemical Hydrogeology*. New York: John Wiley and sons.

Flores, A. C. and Aliaga, A. M. [2020]. *Diagnóstico del Estado Hidrogeológico de la Cuenca del Limarí.* Informe Técnico. Gobierno de Chile, ministerio de obras públicas, dirección general de aguas, división de estudios y planificación.

Freeze, R. and Cherry, J. [1979]. Groundwater. Englewood Cliffs, New Jersey: Prentice Hall.

Heath, R. [1983]. *Basic ground-water hydrology*. Denver, Colorado: U.S. Geological Survey Water-Supply Paper 2220

Isaaks, E. H. and Srivastava, R. M. [1989]. *An Introduction to Applied Geostatistics*. New York: Oxford University Press.

Menke, W. [2012]. *Geophysical Data Analysis: Discrete Inverse Theory (Third Edition)*. Boston: Academic Press. doi: <u>https://doi.org/10.1016/B978-0-12-397160-9.00001-1</u>

Morris, D. and Johnson, A. [1967]. *Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey*. Denver, Colorado: U.S. Geological Survey Water-Supply Paper 1839-D

Pryet, A., Ramm, J., Chilés, J.-P., Auken, E., Deffontaines, B., and Violette, S. [2011]. *3D resistivity gridding of large AEM datasets: A step toward enhanced geological interpretation.* Journal of Applied Geophysics. 75, 277–283. doi: https://doi.org/10.1016/j.jappgeo.2011.07.006

Figuras

Figura A4.1 Figura desde Pryet et al. (2011). Rejilla 3D de resistividad (de arriba a abajo). (A) Los parámetros del modelo geofísico se interpolan en el espacio horizontal 2D desde el conjunto de modelos de inversión vertical 1D. (B) La cuadrícula 3D se construye a partir de posiciones de vértice 3D y se llena con valores de resistividad de los mapas de resistividad correspondientes.

Figura A4.2 Resumen de la caracterización hidroestratigráfica de los diez sectores de continuidad hidrogeológicas definidos en el área de estudio. Para cada sector, se indican las profundidades promedio del fondo de las capas modeladas, así como sus composiciones representadas en fracciones proporcionales al porcentaje de los diferentes materiales a través de ellas (por ejemplo, la primera capa del sector del río Cogotí está compuesta por 77% de arena, 14% de arcilla y 9% de grava y bloques, por lo que se representa con tres símbolos respetando estas proporciones). En azul se representa la profundidad promedio del nivel freático extrapolada del modelo Limarí 2020 y en rojo el promedio de la profundidad máxima de exploración para los sondeos TEM. Cada cantidad se da con su variabilidad total, que es una combinación de la desviación estándar espacial y el promedio de su incertidumbre.

Tablas

Material	n [%]	Sy [%]	Ss [m ⁻¹]	K[ms ⁻¹]
Gravas y bolones	25 - 40	12 - 35	10-5	10 ⁻³ - 10 ⁰
Arenas	25 - 50	10 - 35	10 ⁻⁵ - 10 ⁻⁴	10 ⁻⁶ - 10 ⁻²
Arena arcillosa/limosa	25 - 50	3 - 12	10-4	10 ⁻⁷ - 10 ⁻³
Limo	35 - 50	3 - 19	10-4	10 ⁻⁹ - 10 ⁻⁵
Arcilla	40 - 70	0 - 5	10 ⁻⁴ - 10 ⁻³	10 ⁻¹¹ - 10 ⁻⁹

Tabla A4.1 Valores representativos de propiedades hidráulicas para diferentes materiales geológicosobtenidos de la literatura

Сара	Vt	$\sigma[V_t]$	Vd	$\sigma[V_d]$
1	27290984	15901662	13608525	6985307
2	38449175	18298891	27801714	13883237
3	38938813	22573688	5106872	3212044
Total	104678972	56774241	46517109	24080587

Tabla A4.2 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidaddel relleno aluvial por el sector río Cogotí. Todos los valores son proporcionados en m³.

Capa V_t $\sigma[V_t]$		$\sigma[V_t]$	Vd	$\sigma[V_d]$	
1	20295289	9916660	5463618	3945570	
2	19880825	9356253	2779206	1757768	
3	1259842	687485	755905	601055	
Total	41435956	19960398	8998729	6304392	

Tabla A4.3 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector río Combarbalá. Todos los valores son proporcionados en m³.

Capa V _t		$\sigma[V_t]$	V_d	$\sigma[V_d]$
1	17982098	7860726	10789260	6005282
2	10858735	5920953	1946536	1409023
Total	28840834	13781679	12735796	7414305

Tabla A4.4 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidaddel relleno aluvial por el sector río Pama. Todos los valores son proporcionados en m³.

Сара	V_t	$\sigma[V_t]$	Vd	$\sigma[V_d]$
1	89983154	46480440	47230737	20150552
2	163287891	80001066	108464316	47380300
3	80469575	40917483	4809439	2537398
4	95646875	60055531	58484233	31949353
Total	429387495	227454521	218988730	102017602

Tabla A4.5 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector río Guatulame. Todos los valores son proporcionados en m³.

Сара	V_t	$\sigma[V_t]$	Vd	$\sigma[V_d]$
1	34705654	10686573	24533743	7506191
2	54511821	23792325	18958955	8001005
3	61695830	38821325	26894041	15622671
4	26886445	20644866	6722347	5936301
Total	177799751	93945089	77109082	37066168

Tabla A4.6 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector río Grande arriba del embalse La Paloma. Todos los valores son proporcionados en m³.

Сара		Vt	$\sigma[V_t]$	V_d	$\sigma[V_d]$
	1	47667173	15041044	28600305	12088397
	2	241409883	103351393	10973176	6057222
	3	72684028	30184326	3303819	1674198
	4	203459160	103024938	40691833	26735132
Total		565220244	251601702	83569131	46554949

Tabla A4.7 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad
del relleno aluvial por el sector río Grande debajo del embalse La Paloma. Todos los valores son
proporcionados en m³.

Сара		V_t	$\sigma[V_t]$	Vd	$\sigma[V_d]$
	1	3381011	1014303	676202	236671
	2	44763813	14519998	26858286	9291573
	3	53210225	18156967	31926130	14503559
	4	36486187	12949428	7051997	3041138
	5	160624395	51077029	96374629	37464250
Total		298465625	97717726	162887256	64537190

Tabla A4.8 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector quebrada Ingenio. Todos los valores son proporcionados en m³.

Сара	V_t	$\sigma[V_t]$	Vd	$\sigma[V_d]$
1	99978789	57869911	59987275	20444963
2	548920977	301464479	24950952	10451410
3	888047188	579895118	40365781	23871227
4	307705742	106772501	222494922	126262220
5	8932608750	2850725511	406027656	276373189
Total	10777261445	3896727520	753826641	457403010

Tabla A4.9 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector río Limarí arriba de los Altos de Talinay. Todos los valores son proporcionados en m³.

Сара	V_t	$\sigma[V_t]$	Vd	$\sigma[V_d]$
1	6275266	2129669	3765160	987685
2	16765203	5771247	10059122	2694758
3	8299271	3771282	377240	166387
4	4450452	2155508	3218019	1283007
5	91037656	30140376	4138075	1228553
Total	126827848	43968083	21557617	6360389

Tabla A4.10 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector Estero Punitaqui. Todos los valores son proporcionados en m³.

Сара	Vt	$\sigma[V_t]$	Vd	$\sigma[V_d]$	
1	10372244	5366249	6223347	4960749	
2	26681140	16342926	1597946	1305288	
3	10057420	8459155	670495	594392	
Total	47110804	30168331	8491787	6860429	

Tabla A4.11 Volumen de agua subterránea estimado por cada capa del relleno aluvial y por la totalidad del relleno aluvial por el sector río Limarí debajo de los Altos de Talinay. Todos los valores son proporcionados en m³.

SECTOR	V _t	$\sigma[V_t]$	V _d	$\sigma[V_d]$	%Tot [<i>V</i> _t]	%Tot [V _d]
COGOTI	104678972	56774241	46517109	24080587	0,8	3,3
COMBARBALA	41435956	19960398	8998729	6304392	0,3	0,6
PAMA	28840834	13781679	12735796	7414305	0,2	0,9
GUATULAME	429387495	227454521	218988730	102017602	3,4	15,7
GRANDE AR	177799751	93945089	77109082	37066168	1,4	5,5
GRANDE AB	565220244	251601702	83569131	46554949	4,5	6,0
INGENIO	298465625	97717726	162887256	64537190	2,4	11,7
LIMARI AR	10777261445	3896727520	753826641	457403010	85,6	54,1
PUNITAQUI	126827848	43968083	21557617	6360389	1,0	1,5
LIMARI AB	47110804	30168331	8491787	6860429	0,4	0,6
ÁREA DE ESTUDIO	12597028974	3914658831	1394681879	477591384	100.00	100.00

Tabla A4.12 Volumen de agua subterránea estimado dentro de los sectores de continuidad hidrogeológica definidos en el Anexo 3: Caracterización de acuíferos. En la tabla se dan los volúmenes de agua almacenados dentro de la porosidad, *V*_t, y en la porosidad de drenaje (o volúmenes de agua disponible), *V*_d junto con sus incertidumbres y la contribución porcentual de cada sector a la total cantidad almacenada dentro de toda el área de estudio: %Tot [*V*_t] y %Tot [*V*_d]. Los sectores de continuidad hidrogeológica se muestran en un orden de topografía decreciente y las siglas AB y AR representan aguas arriba y aguas abajo del elemento de discontinuidad en este sector (Embalse La Paloma para el Río Grande y Los Altos de Talinay por el Río Limarí). En la tabla se resumen también los volúmenes total estimados por el área de estudio (es decir, la suma de todos los sectores).